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PREVIEW: SETUP

Consider a dynamic latent factor model with linear loadings

_ T _
lige1 = Zj el fren + €1, El€ja1Zi¢] =0,
——
Bii
where we observe, for assets j and time periods t,
asset excess returns r; 1.1 € Rand

asset characteristics z;; € RP.



PREVIEW: MAIN THEORY CONTRIBUTIONS

In this setup, under the novel asymptotics of p, T,N — oo, contribute

a new estimation procedure for
latent loadings T € RP*k and
latent factors fyiq € Rk, forall t;

and, prove the consistency of these estimators.

Also, | extend to this setting a classic asset pricing test and provide an

asymptotically valid inference procedure.



PREVIEW: EMPIRICAL RESEARCH QUESTIONS

Broadly: Study the dynamics of crypto asset returns.

Specifically:
Measuring expected returns through lens of factor models.
What characteristics are the drivers of returns?
What is the inflation risk premium in the crypto asset class?

If we relax interpretability, what is the maximum out-of-sample

predictability that can we achieve?



MOTIVATION

Static observable factor model:

_aT
lite1 = Bj fre1 ¥ €1

(NT + Tk) data = (Nk) params.



MOTIVATION

Static latent factor model:

AT
Fite1 = Bj Fre1 ¥ €1

NT > Nk + Tk



MOTIVATION

Dynamic latent factor model:

_ I
lit+1 = Z,',trfs fre1 + € a1

NT(1+ p) 2 pk+ Tk



MOTIVATION

Nonparametric dynamic latent factor model:

_ T
rite1 = f(zit) glrie) + €1



SETUP
Assume for time periodst=1,...,Tand assetsi=1,...,N,
we observe realizations of random variables

asset excess returnsr; ¢+; € Rand

asset characteristics z;; € RP, often high-dim. in practice.




SETUP

Assume for time periodst =1,...,Tandassetsi=1,...,N,

we observe realizations of random variables

asset excess returnsr; 141 € R and

asset characteristics z;; € RP, often high-dim. in practice.
Assume the model:

_nl r
lit+1 = ﬁ,',t freg + € t+1>

_rT B
Bit=Tgzit*e€p



SETUP

Assume for time periodst=1,...,Tand assetsi=1,...,N, we observe
asset excess returnsr; 141 € R and asset characteristics Zjt € RP.
Assume the model:
) =72 Th frir + €; Ele; 1=0
liee1 = Zj el fren * €1, El€ja1Zie] =0,
~——
Bii
where
frs1 € Rk are low-dimensional latent factors;
s € RP*K are unknown factor loading parameters; and,

€] 4415 e?t € R are unobserved scalar idiosyncratic errors.



SETUP

Assume for time periodst=1,...,Tand assetsi=1,...,N, we observe
asset excess returns r; ¢4; € R and asset characteristics z;; € RP.
Assume the model:
i =7 Ta fraq + € Ele; 1=0
fie1 = 240 fre1 € a1, Elejenlzie] =0,
——
Bi
where
fre1 € Rk are low-dimensional latent factors and
s € RP*k are unknown factor loading parameters.

Key assump.: g is exactly row sparse, i.e. most rows exactly zero.
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In this framework, we address a common asset pricing question.
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EXTENDED SETUP (1/2)

Within this framework, we address an asset pricing research question.

What is the risk premium of an observable nontradable factor gt+; € R?

Asset pricing context:
Risk premium: return for exposure to the factor, ceteris paribus.
If tradable, the risk premium is the time-series average of the factor.
If nontradable, form factor mimicking-portfolio.

Following Giglio, Xiu, and Zhang (2021),
assume latent factor model recovers true factor model and

project observable nontradable factor onto latent factors.



EXTENDED SETUP (2/2)

What is the risk premium of an observable nontradable factor gt+1 € R?

Assume for true latent factors fsq :

fre1 =V + Vir, Elvi+1]1=0

g1 =8+n Ve +edyy, Elvenedy]=0.



EXTENDED SETUP (2/2)

What is the risk premium of an observable nontradable factor gt+; € R?

Assume for true factors fy4q :
fre1 =Y + Vesa, Elvee1]l =0
gte1 =8 +n Ve +€fyy, Elvpref, ] =0.
where

mne Rk is an unknown parameter mapping and

g . .
€741 IS Measurement error in gi4.



EXTENDED SETUP (2/2)

What is the risk premium of an observable nontradable factor g¢+; € R?

Assume for true factors fy4q :
fre1 =y + Vesn, Elvi+11=0
ges1 =8+ Vs +ef,), Elveef, ]=0.
where
n € R¥is an unknown parameter mapping and

g . .
€{,1 is measurement error in g¢.1.

Our target parameter isyg = nTy.



THEORETICAL CONTRIBUTIONS

The model:

_ T _ _
lige1 = 2 g (v +ves) + €001, El€j1412i¢] = 0, E[vira€jpaa] = 0,

g1 = 5+ M Vet + €0y, Elverief,y] = 0.

Two contributions, under novel asymptotics of p, T,N — oc:
consistently estimate latent loadings I's and factors f¢.; and
conduct inference onyg =n "y

under novel use of a dynamic latent factor model.



OUTLINE
Preview
Motivation
Setup
Theory Literature Review
Estimation
Key Assumptions
Asymptotic Results
Proof Outlines

Monte Carlo Evidence

Empirical Research Questions
Empirical Literature Review
Empirical Setting

Motivating Empirical Facts

Empirical Results:

Low Dim. Factor Models

Empirical Results:

High Dimensional Models



THEORY LITERATURE REVIEW

The scope of the relevant literature is enormous. To name a few:

Dynamic latent factor models: Connor and Linton (2007), Fan, Liao,
and Wang (2016), Kelly, Pruitt, and Su (2019) @9, Kelly, Pruitt, and Su
(2020), etc.

Tests of observable factors: Fama and MacBeth (1973) GEEEEED, Feng,
Giglio, and Xiu (2020) GEZE, Giglio and Xiu (2021), etc.

DML: Belloni, Chernozhukov, and Hansen (2014), Chernozhukov et al.
(2018), Semenova and Chernozhukov (2021), etc.



ESTIMATION (1/4)

_ T _
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ESTIMATION (1/4)

Rewrite the model:

_ T _
fit+1 = 2l Fren + € pen, Elejtalzie] = 0,
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ESTIMATION (1/4)

Rewrite the model:
_ T
M+l = 2T p Fren + € pe1,
_ T _
= Zj,tjCte1j * Zjp Cte,—j + Eitels Elejt+1lzi,e] = 0,
T
Ct+l’j P rﬁ’j ft+l
To estimate ¢4 Vt,j

run Lasso to account for p ~ N,



ESTIMATION (1/4)

Rewrite the model:
_ T
lie1 = 2T p Fre1 + € pen,
_ T _
= ZjtjCt+1,j * Zj ¢ _jCtr1, + €itels Elejt+1lzi ] = O,
T
Ct+lJ - rﬁ,j ft+]_
To estimate ¢y Vt,j

run Lasso to account for p ~ N, but then biased inference for yg;



ESTIMATION (1/4)

Rewrite the model:
_ T
M+l = 2T p Fre1 + € pen,
_ T _
= ZjtjCt+1,j * Zj ¢ —jCt+1, + €itels Elejt+1lzie] = O,
!
Ct+l’j P rﬁ’j ft+l
To estimate ¢4 Vt,j

instead run Double Selection Lasso (DSL).



ESTIMATION (2/4)

Model:

_ T _
Fijt1 = Zjt,jCt+1,j ¥ Zj ¢ jCte1,—j ¥ €jt+1s Elejtlzie] =0, W

1l
Ct+lJ M FBJ ft+l.

Procedure:
To estimate Cr1 j, run T X p cross sectional DSL regressions.

To estimate Tg € RP*¥and F € R7*K, run PCAon C := I?Fg € RT*P,

Given exact row sparsity, soft-threshold FB to set most rows to zero for fﬁ.



ESTIMATION (3/4)

Model for risk premium of nontradable observable factors:

_ T _ _
fie1 = 23T (Y +Ves1) + €041, El€j412i¢] = 0, E[ver1€pa1] = 0,

gt+1 = T]—|—Vt“+l + €?+1’ E[€?+1] =0, E[Vt+l€?+1] =0.



ESTIMATION (3/4)
Model for risk premia of nontradable observable factors:

Fite1 = Z,'Ttr[s (Y +Vve+1) + €it+1,  El€j 1] =0, Elvir1€j441] = 0,
ger1 =1 Ver1 * €?+1, E[€?+1] =0, E[Vt+1€?+1] = 0.
Identification:

Cannot jointly estimaten and v (g and f1) without further restrictions.

E.g., three classic approaches of Bai and Ng (2013).

So parameters are identified up to rotation matrix H € RKxk That s,

n=Hmgandy = Hyo (Tg =TPH L and fey = HFY,,).

Utilize rotation invariant result of Giglio and Xiu (2021):

Yg=ng H' THyo=n"y



ESTIMATION (4/4)

Model for risk premia of nontradable observable factors:

_.T _ _
fite1 = Zi gy +Vern) + €1, El€j 4411 = 0, Elvesa€aa] =0,

(2)
gt+1 = 11TVt+1 + €?+1: E[€?+1] =0, E[Vt+1€?+1] =0.
Procedure: yg = a'y

Estimate factor innovations V¢+1 and loadings fﬁ as before but with

demeaned returns.

Estimate latent factor risk premia y via CS OLS of average returns 7 € R" on

estimated latent factor loadings@ =771 thtfﬁ e RV,

Estimate latent to observable factor mapping 1j via TS OLS of demeaned g¢+1

on estimated latent factor innovations V..
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KEY ASSUMPTIONS (1/2)

Assumption (Consistency of DSL)

Sparse Loading: Loading matrix T'g admits an exactly sparse
form. Thatis, for ds € N+,i.e.p>s > 1, I's has at most s nonzero
rows: P} 1{}|rﬁz,||1 > o} BROK iionci 5L Assumpions




KEY ASSUMPTIONS (2/2)

Assumption (Consistency of Latent Factor Model)

Nonzero and distinct eigenvalues: from the infeasible
eigendecomposition of (T p)™1CCT, the k largest eigenvalues A;

fori € {1,...,k} are bounded away from zero and distinct,

min [Ac = A;| > 0.
i:i7/|<| <=

Additional Latent Factor Model Consistency Assumptions



ASYMPTOTIC RESULTS (1/3)

Proposition (Consistency of Latent Factors)
Under the DSLFM model (1) and aforementioned Assumptions 1 and 2,

with additional Appendix Assumptions 1-6, where T,N, p — oo, then
for all t the latent factor estimator has the property that

~ slog(T p)
ft+1-HTf?+1=OP< %)




PROOF OUTLINE: CONSISTENT LATENT FACTORS

Recall C = FFg,thus (Tp)ytect = (Tp)‘lFFgFBFT.

~ log(T
Key rate: maxt |Ct+1J - Ct+1,j| =0p < %/(VP)> :

Gives control over the distance between feasible and infeasible matrix:

H(Tp)—l’CTET B (Tp)—lCCTH -0, (logNTP> ‘

Davis Kahan Theorem bounds distance between eigenvectors by distance

between matrices.

Finally, use Wely inequality to bound distance between eigenvalues.



ASYMPTOTIC RESULTS (2/3)

Proposition (Consistency of Latent Factor Loadings)
Under the DSLFM model (1) and aforementioned Assumptions 1 and 2,

with additional Appendix Assumptions 1-6, where T,N, p — oo, then

the latent loading estimator has the property that

y 0.1 slog(T p)
Mg - ToH -op< — |




PROOF OUTLINE: CONSISTENT LOADINGS

Aforementioned results yield:

Hfﬁ _ rg(HT)_IHOO -0, ( log/(VTP)> ‘

Utilizing Theorem 2.10 from Belloni et al. (2018) under exact sparsity of '3, s.t.

A > (1 - «) - quantile of HFB - Fg (HT)‘IH ,

oo

then given « — 0and A < /log(T p)/N, we have forallg > 1

o807, e/




ASYMPTOTIC RESULTS (3/3)

Theorem (Normality of Observable Factor Risk Premium)
Under the models (1) and (2); Assumptions 1 and 2; Appendix

Assumptions 1-10, and, if Ts? log(T p)/N — 0,thenas T,N, p — oc the
estimatoryq obeys

\/T—wg “Yg) d, N(0, 1).
Og




MONTE CARLO EVIDENCE (1/2)

Goal: study the finite-sample estimation error of our latent loading and factor
estimators and the coverage properties of our risk premium estimator compared

to relevant benchmarks.
DGP: for S =200, T = 100, N = 500,k = 3, p € {10,50},s = p/10
Latent loadings: fit IPCA to empirical panel; set p - s rows to zero.

Latent factors: fit IPCA to empirical panel; fit VAR(1) to fitted latent factors;

simulate from fitted VAR(1) with normal innovations.

Characteristics: fit panel VAR(1) to demeaned empirical panel of{Zt}tT:1 and

simulate from VAR(1) with normal innovations. Set means to bs.

Returns and observable factor are generated according to the model where

errors are calibrated to empirical R2.



MONTE CARLO EVIDENCE (2/2)

Low-Dimensional: p = 10 EIMEEIETESED

Factor of ~ 3 superior estimation error for I'g.

Order of magnitude inferior estimation error for f¢1.

DSLFM under-covers (6-9%) while Giglio over-covers (2-4%) vg.
High-Dimensional: p = 50 EIEEEETIETD

Factor of >3 superior estimation error for I'.

Inferior (x4) estimation error for fy1.

DSLFM degrades 1% while Giglio degrades > 3% .
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EMPIRICAL RESEARCH QUESTIONS

Broadly: Study the dynamics of crypto asset excess returns.

Specifically:
Measuring expected returns through lens of factor models.
What characteristics are the drivers of returns?
What is the inflation risk premium in the crypto asset class?

If we relax interpretability, what is the maximum out-of-sample

predictability that can we achieve?



EMPIRICAL LITERATURE REVIEW

Empirical crypto asset pricing is a nascent literature. To name a few:

Asset pricing ability of factors models: Liu et al. (2019), Shams (2020),
Bianchi and Babiak (2021), Liu, Tsyvinski, and Wu (2022), etc.

Crypto empirical facts: Makarov and Schoar (2020), Hu, Parlour, and
Rajan (2019), Borri (2019), Bianchi (2020), Liu and Tsyvinski (2021),
Bianchi, Guidolin, and Pedio (2022), Cheah et al. (2022), Zhang and Li
(2020), Zhang et al. (2021), Zhang and Li (2023), etc.

Crypto panel: Liebi (2022), Borri et al. (2022), Cong et al. (2022).

ML Factor Models: Chen, Pelger, and Zhu (2020), Gu, Kelly, and Xiu
(2020), Gu, Kelly, and Xiu (2021), Giglio, Kelly, and Xiu (2022).



EMPIRICAL SETTING

Weekly panel of crypto asset excess returns from 2018-2022, inclusive,
with 63 time-varying asset characteristics.

Inclusion criteria: month by month look back over trailing 3 months

tradable on US CEX;
remove stablecoins and synthetic assets;

asset mean mcap above 1 bps of total crypto mcap; and,

asset median total weekly trade volume on US exchanges above $500k.
When fitting models sequentially, have to reform panel monthly.

Form price from volume-weighted average hourly candle mid price.
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MOTIVATING EMPIRICAL FACTS (1/3)

Crypto Signals:

There are several characteristics with significant signal for the cross-section

of one-week ahead expected returns.

The asset characteristics contain redundant information; however, the

variation cannot be captured by just a few principal components.

Figures: Char. Correlations and Signal J



MOTIVATING EMPIRICAL FACTS (2/3)

A New and Rising Asset Class:

From zero in 2009, Bitcoin and hundreds of other crypto assets have become a trillion dollar

asset class in 2022, with several multi-billion dollar sub-industries.

Bitcoin achieved superior risk-adjusted returns for nearly the entire study time period as

compared to traditional asset classes.

Bitcoin has lower correlations to the Nasdaq and S&P500 (at 0.23 and 0.21) than that of gold’s

correlation to these indices (at 0.26 and 0.28).

Bitcoin’s correlation with other assets is highly time varying, including several quarters of zero
or negative correlation with the Nasdag; their high correlation (> 0.3) is only observed recently
in 2022.

From diversifying a risk portfolio of holding 100% Nasdaq to 60% Nasdaq and 40% CMKT, one
would obtain a Sharpe Ratio gain of 0.53 (from 0.43 to 0.96).

The crypto market offers a positive inflation risk premium of 31 bps.

TN oo X oroe tios X Corlations . Roling Crrlaions %8 Fisand Return 3 . fisk premim 3



MOTIVATING EMPIRICAL FACTS (3/3)

Bitcoin Onchain Facts:
Bitcoin is primarily used as a store value, not speculatively trading.

Bitcoin is a payment network settling hundreds of billions of dollars

annually where the large majority of transactions cost less then one USD.

Efforts to fork, that is copy, the Bitcoin blockchain have had immaterial
adverse effects on it; an event study of forks observes, on the contrary,
significant positive effects on price, trading volume, active addresses, and

social activity.

Figures: LY, GEY, GEZD.



LOW DIM. MODELS: UNIVARIATE FACTORS (1/2)

Begin our empirical study of return dynamics by forming univariate

factors from each asset characteristic.

Form zero-net investment long-short quintile strategies for t + 1

sorted on each characteristic at time t.

Statistically and economically significant strategies are financial (i.e.
two week momentum, 30 and 60 day industry momentum, beta,

idiosyncratic skewness, and 5% shortfall).
35 of 57 remaining strategies have weekly excess return above 30 bps.

Predictors of average excess returns appear to be characteristic-based

factors formed as functions of previous returns.



LOW DIM. MODELS: MULTI, PCA, IPCA (2/2)

Multifactor models: static observable, static latent, & dynamic latent.
Estimation procedures are Fama-MacBeth, PCA, and IPCA.

All three have long-short strategies with economically significant
Sharpe ratios of 1-4 (IPCA has stat. sig.) although optimal number of
factors is inconsistent. CEENEESITEED.

Replicates IPCA to new asset class, and suggestive of signal in

characteristics.



OUTLINE

Low-Dim.-FactorModels
Empirical Results:

High Dimensional Models



HIGH DIM. MODELS: DSLFM (1/4)

Study three questions:
out of sample predictability;
characteristic importance; and,

inflation risk premium.



HIGH DIM. MODELS: DSLFM 00S (2/4)

In comparing predictability of DSLFM to previous models:
CV penalty hyperparameters in Q3 2021 - Q2 2022.
Positive R%)red for only 1 factor model.
Sharpe ratios of ~ 1 for mcap weighted and ~ 2.5 for equal weighted.

IPCA outperforms on Sharpe and pricing ability, but not materially.

Limited N for asymptotics to kick in; no feature selection for feat. imp.



HIGH DIM. MODELS: DSLFM CHAR. IMP. (3/4)

Implement bootstrap procedure for characteristic importance:
~ _ /\T P
Wi =TpT8,:

According to the DSLFM, the drivers of returns are exchange

inflows and outflows.

DSLFM Char. Imp.



HIGH DIM. MODELS: DSLFM INFLATION (4/4)

Outstanding question on the relationship of crypto’s returns to

inflation.
Perform inference procedure for inflation risk premium .
Inflation risk premium of statistically significant 1.4 bps per week.

Corroborates with a dynamic latent factor model with superior
pricing ability the result using the static observable factor model fit

with the Fama-MacBeth procedure.

The asset class provides investors positive compensation for holding

an inflation-hedged crypto portfolio, ceteris paribus.



HIGH DIM. MODELS: DEEP LEARNING (1/6)

We ask:
what is the maximum out of sample Sharpe ratio achievable
in our out of sample period

by relaxing interpretability of the factor model to specify

nonparametric factors and factor loadings

estimated with deep learning?



HIGH DIM. MODELS: DEEP LEARNING (2/6)

Why DL to learn f(-)inr;¢eq = FIt) + €41
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Why DL to learn f(-)inr;¢eq = FIt) + €41
It is high dimensional
It redundant = regularization!
f(-) is likely non-linear.

DL’s universal approximation theorems, e.g. Hornik, Stinchcombe,
and White (1990).



HIGH DIM. MODELS: DEEP LEARNING (2/6)

Why DL to learn f(-)inr;¢eq = FIt) + €41
It is high dimensional
It redundant = regularization!
f(-) is likely non-linear.

DL’s universal approximation theorems, e.g. Hornik, Stinchcombe,
and White (1990).

Minuscule improvement is the name of the game.
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HIGH DIM. MODELS: DEEP LEARNING (3/6)

Now, why not?

lite1 = Fl)) + €41, Elets1]le] = 0.

EMH = f(-) =0,suchthatrs; =0+ €)1
It’s f¢(-), not ().

Makes the curse of dimensionality much bigger problem.



HIGH DIM. MODELS: DEEP LEARNING (3/6)

Now, why not?

lite1 = Fl)) + €41, Elets1]le] = 0.

EMH = f(-) = 0,suchthatr;s; =0+ €;41.
It’s f¢(), not f(-).
Makes the curse of dimensionality much bigger problem.

Perhaps SOTA DL with lots of regularization?



HIGH DIM. MODELS: DEEP LEARNING (4/6)

Utilize recent adaption of feed-forward neural networks within a factor

model structure: stay true to equilibrium asset pricing theory.

Several modifications:
Nonlinear factor autoencoder.

Sequential CV with more hp points: learning rate decay, Adam

parameters, weights and bias initializers, etc.
Weight loss by hourly trade volume over previous hour.

Feature selection down to 50 characteristics.

Also, embed Transformers into factor model structure.



HIGH DIM. MODELS: DEEP LEARNING (5/6)

Iterative step-forward CV: for each hyperparameter pointin the grid,

Set training data to 2018-2020.

For transformer, dropped 2018-2019 due to too many missing assets.

2020 has 532,368 non-missing asset-hours.
Set validation data to Q1 2021.
For each week in the validation period,

Fitin training and predict in val week.

Add current validation data to training, set next quarter to validation.

Select best model from validation period. OOS predict, once.



HIGH DIM. MODELS: DEEP LEARNING (6/6)

Autoencoder dominates on out of sample Sharpe at 10.

It failed to achieve positive out-of-sample predictive R?.

DL Results.

Transformer had a stat. sig. Ri)red of 3.6%,

But, returns were negative in the Q3-Q4 2022 data to transaction costs,

which motivates further research with 2023 data.
Scaling laws present in validation period up to 50-100k parameters,

but did not replicate out of sample.

I am focused on exploring these DL scaling laws in practice.
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APPENDIX: IPCA

The modelis

—
I’,,t = Zl,t_1r6 ft + ei,t.

The objective function is to minimize the sum of the squared errors:

T

min > (re - Ze1Ts fr) T (re = ZeaTs fe) -
Fs: fe 'y



APPENDIX: IPCA

The first-order conditions are
p & ol £ 71 T
fr = (rézt—lzt—lr6> rézt—lrt:

vec (ff) = <Tiztlztl®ftft> (Tl[zH@ft} )

t=1 t=1

Factor realizations are period-by-period cross section regression coefficients

of ry on the latent loading matrix d¢_;.

I's is the coefficient of returns regressed on the factors interacted with

firm-specific characteristics.



APPENDIX: IPCA

Similarities:
(Second-stage) factor model relationship and joint fitting.
Cross-sectional and time-series two step procedures a la Fama MacBeth.

Efficiency gains from using asset covariates.

Accommodate unbalanced panels.

Pro Double Lasso: Pro IPCA:
Sparse estimation Conceptually simpler
Convex objective functions optimization
Model high dimensional p Fewer assumptions for
asymptotic theory

Closed-form inference for target

uEsHion Rapid estimation

Back to Lit Review X Backto Est



APPENDIX: FAMA-MACBETH REGRESSIONS

The classic observable factor model estimation is the Fama and MacBeth (1973) procedure.
We first run N TS regressions for each asset followed by T CS regressions for each time period.

That is, we first estimate B,- for each asset i by running TS OLS of{r;,tﬂ}[:l on {ft+l}rT=1~

N

Next, we run Vt the CS OLS of asset excess returns {r1}i; on estimated factor loadings { G;}ﬁl.

We recover estimates 5\f for the risk premium A¢ = E¢[ f¢+1] as well as
the pricing errors from the cross-sectional residuals, &; +1.

Finally, we estimate the parameters of interest: the static risk premium A and the static average

pricing error &; as the time-series averages of the relevant estimator, At and &; 1, respectively.



APPENDIX: DSL ESTIMATION PROCEDURE

— T —
lit+l = ZjtjCes1j ¥ Zip jCes1—j *+ €jev1,  El€141]216] =0,
z —
Zitj =4 t—jétj + e/ ) E[ei,t,j|zi,t,-f] =0,
Ct+l’j = FBJ ft+l.

For?t+1J, run T x p Double Selection Lasso CS regressions Vt,j.
Lasso {fi,t+1},~l\i1 — {z,-,t}f.\il for71 =nonzero elements of ¢;.
Lasso {z;¢ ¥, — {z;¢ 1L, for I, = nonzero elemnts ofgu.
DefineT:le U72 U73 where73 is manually chosen.

oLS {r,-’t}f.\il on elements of{z,-’t_l}ﬁl in'.



APPENDIX: ASSUMPTIONS
Assumption (DSL Uniform Consistency)

Bounded Characteristic Portfolios: For a finite absolute constant M and Vt, j,

<M.

|ces1j| = ‘r[—sr,jftﬂ
Sparsity rate: The sparsity index obeys s log? (p VV N) / ( N log(Tp)) < w7
Additionally, log® p/N < oN,T.

Weak dependence between the first- and second-stage errors: There exists a

positive constant M such that¥ p, T, N :

1 N
z
\/ N Z €it,jCit+l
i=1

Additional standard DSL assumptions in Appendix C.2 of the paper.

< Mlog(T p).




APPENDIX: ASSUMPTIONS

Assumption (Consistency of Latent Factor Model)

4
Factors: E H .l <M<ooand 13, 2, f?+T1 —p Zffor

some k x k positive definite matrix X ¢.

Factor Loadings: Vj,

gl < M<ocoand||rfrg/p-£r| =0

for some k x k positive definite matrix Zy.



APPENDIX: ASSUMPTIONS

Assumption (Inference)

Ja generic absolute constant M < oo such that for all p, T,N :
Bounded idiosyncratic errors: E[(>; €i,t+1)2] < TM.
Bounded scaled factor innovations: E[(3", z,.,Tth v2,1)?] < sTM.
Bounded measurement errors: E[(e?ﬂ)z] < M.



APPENDIX: ASSUMPTIONS

Assumption (Inference)

Convergence of characteristics:
% > i 2t Elzj ¢ j1zipr p — p Zy j o uniformly over t,j,j for
j,J/ €11,2,..., p}and a nonstochastic finite constant Zt,jJ/ €R.

CLT: As T — oo,

\/_ Z (Vt+1€t+l> i> N(0, @)

ﬂtvt+l

kak

for random matrix TT; € and nonstochastic matrix

O e RZkXZk.



Parameter

Metric

MSE
Bias?
Var
MSE
Bias?
Var
MSE
Bias?
Var
MSE
Bias?
Var
MSE
Bias?
Var
Covo0
Covds

(1)
IPCA
0.112526
0.020931
0.091596
0.046446
0.000538
0.041890
1.736775
0.051617
1551492
0.007724
0.000066
0.012636

2

Three-Pass Est.

1.023278
0.006095
1.006150
0.348060
0.027838
0.008405

Back to Simulation Result Summary.

3
DSLFM
0.040480
0.029007
0.011473
1.008919
0.007407
0.992703
0.336661
0.027619
0.000433
0.034307
0.000184
0.033998
0.000125
0.000019
0.000015
0.835000
0.855000




Parameter

Metric
MSE
Bias?

Var
MSE
Bias?

Var
MSE

Bias?
Var
MSE
Bias?
Var
MSE

Var

(1)
IPCA
0.024564
0.008984
0.015580
0.2234486
0.009573
0.228714
4171191
0.606915
4.084398
0.013972
0.000751
0.013849

@

Three-Pass Est.

1.034021
0.033910
0.989699
0.430072
0.161588
0.013159

0.015229
0.015084
0.000058
1.000000
1.000000

Back to Simulation Result Summary.

(3
DSLFM
0.009921
0.008385
0.001536
1.011574
0.033418
0.967504
0.396931
0.155526
0.000983
0.007161
0.000212
0.007001
0.014656
0.014495
0.000069
0.828571
0.842857




Panel A. Panel summary by year.
Unigue CMKT Excess Total Median Median
Assets Return Mcap ($B) Mcap ($B) Volume ($MM)
2018 10 -71.04% $102 $8.72 $10.27
2019 15 62.89% $163 $3.70 $11.96
2020 25 280.61% $618 $2.05 $11.64
2021 154 332.54% $2,121 $1.42 $27.36
2022 204 -64.05% $629 $0.45 $14.78
All 210 179.16% $629 $0.84 $17.58
Panel B. Summary statistics of annualized excess returns.
Mean SD Sharpe Skewness Kurtosis
CMKT 53.84% 80.61% 0.67 -0.02 0.02
Bitcoin 27.09% 75.07% 0.36 -0.02 0.02
Ethereum 52.97T% 100.11% 053 0.03 0.04
Nasdag 9.85% 22.98% 0.43 -0.03 0.03
Panel C. Extreme events of weekly CMKT excess returns.
Disasters Counts % Miracles Counts
<-50 67 2577% | >5% 86
<-10% 1346% @ >10%
<-20% 8 3.08% Po>20%
<-30% 3 115% | >30%

Year

Back to Empirical Setting




APPENDIX: MOST ASSETS HAVE NEGATIVE RETURN

10-2 -

1 i 1 1 | 1
2018 2019 2020 2021 2022 2023

Back to Empirical Setting



APPENDIX: MARKET CAPS

1012

101

1010

102
102
101
101
V~
"
10 i 100
™
"
B
o
10 [/\// 102
~ [
/ J W/
108 108
18 2019 2020 2021 2022 2018 2019 2020 2021 2022 2018 2019 2020 2021 2022
— total btc eth —— asset_mgmt —— dex lending —— discount ~ —— payments work
— cex —— gaming media —— dividends vote
—— cloud_compute infra other_defi
—— currency interop smart_contract
—— data_mgmt

Back to Motivai




— Bitcoin —— Global Stocks ——— Emerging Currencies
—— Nasdaq —— US Bonds Gold
—— SnP500 —— US Real Estate

Back to Motivating Empirical Facts



BTC ETH NSDQ SP500 RUSS \
Crypto Market 0.26 0.25 0.28 0.28
Bitcoin 0.23 0.21 0.25 0.24
Ethereum
Nasdaq
S&P 500
Russell 2000

Global Stocks

US Bonds

Ex-US Global Bonds
US Real Estate
Emerging Currencies
Commodities

Gold

Back to Motivating Empirical Facts



2021

—— Nasdaq —— Emerging Currencies  —— Gold
—— US Bonds —— Commodities EXPINF1YR
—— Us Real Estate

Back to Motivating Empirical Facts



Back to Motivating Empirical Facts




Panel A. BTC Return Time-Series Regression.

Expected Inflation 0.1993
10 Year (0.4822)
0.3295
CMKT (0.1213)
0.0180
(0.0289)
R2 11.7%
N 60
Panel B. Fama-MacBeth Regression.

Expected Inflation 0.0031
10 Year (0.0157)
0.0373
(0.0114)
R2 0.2%
N 26

Constant

Constant

Back to Motivating Empirical Facts



Back to Motivating Empirical Facts



2019 2020 2021 2022

—— Monthly Volume (USD) —— Median Fee (USD)

Back to Motivating Empirical Facts



Estimate Standard Error
Return 0.0079 0.0027
Trading Volume 0.0430 0.0126
Active Addresses 0.0054 0.0029

Developer Activity 0.0174 0.0241
Social Volume 0.0206 0.0061
Miner Hash Rate 0.0001 0.0023

Back to Motivating Empirical Facts



APPENDIX: CHARACTERISTIC CORRELATIONS AND
SIGNAL

See paper appendix figures A15 through A24.



Return Tm14

Return Industry Tm30

Return Industry Tm60

Beta Tm7

iSkew Tm30

Shortfalls Tm7

2

-0.0012
-(0.15)
0.0025
(0.27)
0.0026

(0.29)
0.0099
(1.11)
0.0033
(0.40)
0.0074
(0.72)

Quintiles
3

0.0043
(0.45)
0.0080
(0.90)
0.0061
(0.71)
0.0058
(0.64)
0.0065
(0.72)
0.0041
(0.48)

4

0.0093
(1.10)
-0.0003
-(0.03)
0.0027
(0.30)
0.0062
(0.74)
0.0032
(0.30)
0.0061
(0.68)

Back to Univariate Factor Models.

5

0.0116
(1.36)
0.0122
(1.38)
0.0150
(1.64)
-0.0026
-(0.29)
0.0093
(1.02)
0.0053
(0.80)

5-1
0.0147*
(1.74)
0.0115*
(1.67)
0.0136*
(1.94)
-0.0156*
-(1.70)
0.0123*
(1.77)
0.0138*
(1.69)




APPENDIX: LOW DIMENSIONAL FACTOR MODELS

See paper appendix table A31.



Weighting  # Factors

Pred. R2

Quintiles

5-1

TS Avg

0.0007

<0

<0

(-0.6)
-0.0113
(-0.66)
-0.0028
(-0.26)

3
-0.0008
(-0.05)
-0.0031

-0.7)

0.0156
(1.64)
-0.0043
(-0.49)
0.0001
(0.01)
0.014
(1.29)
0.0089

ay

00127+
(237)
0.0073
(1.02)

0.0177%
(2.09)

Back to DSLFM.

Turnover
0.41

MDD
-0.14

-0.29

-0.27

-0.26

-0.16

-0.06

-0.13

-0.06

-0.08

-0.16

(0.0101)
0.0086
(0.0081)

0.0125*
(0.0054)
0.0065
(0.0051)
0.0171*
(0.0073)
0.0156**
(0.0068)
0.0066
(0.0095)

Beta
0.0309
(0.1239)
0.3425*+*
(0.0899)
0.4762%+*
(0.1133)
0.3046*
(0.1271)
0.1257
(0.2019)

0.0825
(0.068)
03291
(0.0647)
0.3023***
(0.0922)
0.2196**
(0.0853)
0.1342
(0.1191)




Exchange Inflow
Exchange Outflow
Return Industry Tm30
Sentiment Neg. Reddit
Volume Sum Tm7
Alpha Tm7

Sentiment Pos. Reddit
Return Tm90

Social Volume Reddit
Alpha Tm30

Ask Size

Return Industry Tm60
Shortfall5 Tm7

Vol Tm90

Bid Size

% Supply in Profit
Active Addresses Tm7
Vol Tm7

Return Industry Tm30

Estimate
0.0558***
0.0547***
0.0048
0.0045
0.0044
0.0038
0.0037
0.0026
0.0022
0.0021
0.0020
0.0019
0.0019
0.0017
0.0013
0.0011
0.0011
0.0011
0.0011

Back to DSLFM Char Imp.

Standard Error
0.0161
0.0161
0.0046
0.0071
0.0049
0.0043
0.0058
0.0037
0.0026
0.0021
0.0026
0.0023
0.0021
0.0018
0.0018
0.0011
0.0014
0.0020
0.0016




Beta Output Layer
(NxK)

Hidden Layer (s)

Input Layer 1

Output Layer
(Nx1)

Dot Product

Back to DL Models.

(factor)

Factor Output Layer
(Kx1)

Input Layer 2

(Px1)




Output Layer:
Predicted Returns

Dot product

Beta Output Layer
(NXK)

Factor Output Layer
(kx1)

Transformer Layer Transformer Layer

(N heads) ! Add & Norm (Nx#heacs)

Input Layer:
Macro & Characteristic Input Layer:
Covariates Lagged Retums

.

Back to DL Models.



Weighting

Mcap

Equal

Pred. R2
-0.0033

TS Avg
0.0018***
(6.88)

0.0020%**
(7.33)

5-1
Sharpe Sortino  Turnover

9.69 33.19 0.02

10.32

Back to DL FM Results.

Alpha
0.0005*
(0.0003)

0.0006**
(0.0003)

eta
0.1965**
(0.0567)

0.2037%
(0.0581)
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