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PREVIEW: SETUP

Consider a dynamic latent factor model with linear loadings

ri,t+1 = z>i,tΓβ︸ ︷︷ ︸
β>i,t

f t+1 + εi,t+1, E[εi,t+1|zi,t] = 0,

where we observe, for assets i and time periods t,

• asset excess returns ri,t+1 ∈ R and

• asset characteristics zi,t ∈ R p.



PREVIEW: MAIN THEORY CONTRIBUTIONS

In this setup, under the novel asymptotics of p, T,N→∞, contribute
a new estimation procedure for

• latent loadings Γβ ∈ R p×k and

• latent factors f t+1 ∈ Rk, for all t;

and, prove the consistency of these estimators.

Also, I extend to this setting a classic asset pricing test and provide an
asymptotically valid inference procedure.



PREVIEW: EMPIRICAL RESEARCH QUESTIONS

Broadly: Study the dynamics of crypto asset returns.

Specifically:

• Measuring expected returns through lens of factor models.

• What characteristics are the drivers of returns?

• What is the inflation risk premium in the crypto asset class?

• If we relax interpretability, what is the maximum out-of-sample
predictability that can we achieve?
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(NT + Tk) data & (Nk) params.
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MOTIVATION

Static observable factor model: ri,t+1 = β>i f t+1 + εi,t+1.

Static latent factor model: ri,t+1 = β>i f t+1 + εi,t+1.

Dynamic latent factor model: ri,t+1 = z>i,tΓβ f t+1 + εi,t+1.

Nonparametric dynamic latent factor model:

ri,t+1 = f (zi,t)>g(ri,t) + εi,t+1
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SETUP
Assume for time periods t = 1, . . . , T and assets i = 1, . . . ,N, we observe

• asset excess returns ri,t+1 ∈ R and asset characteristics zi,t ∈ R p.

Assume the model:

ri,t+1 = z>i,tΓβ︸ ︷︷ ︸
β>i,t

f t+1 + εi,t+1, E[εi,t+1|zi,t] = 0,

where

• f t+1 ∈ Rk are low-dimensional latent factors and

• Γβ ∈ R p×k are unknown factor loading parameters.

– Key assump.: Γβ is exactly row sparse, i.e. most rows exactly zero.
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EXTENDED SETUP (1/2)
Within this framework, we address an asset pricing research question.

What is the risk premium of an observable nontradable factor gt+1 ∈ R?

Asset pricing context:

• Risk premium: return for exposure to the factor, ceteris paribus.

• If tradable, the risk premium is the time-series average of the factor.

• If nontradable, form factor mimicking-portfolio.

• Following Giglio, Xiu, and Zhang (2021),
– assume latent factor model recovers true factor model and

– project observable nontradable factor onto latent factors.
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Assume for true latent factors f t+1 :

f t+1 := γ + vt+1, E[vt+1] = 0

gt+1 = δ + η>vt+1 + ε
g
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g
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EXTENDED SETUP (2/2)
What is the risk premium of an observable nontradable factor gt+1 ∈ R?

Assume for true factors f t+1 :

f t+1 := γ + vt+1, E[vt+1] = 0

gt+1 = δ + η>vt+1 + ε
g
t+1, E[vt+1ε

g
t+1] = 0.

where

• η ∈ Rk is an unknown parameter mapping and

• ε
g
t+1 is measurement error in gt+1.

Our target parameter is γg = η>γ.



THEORETICAL CONTRIBUTIONS

The model:

ri,t+1 = z>i,tΓβ(γ + vt+1) + εi,t+1, E[εi,t+1|zi,t] = 0, E[vt+1εi,t+1] = 0,

gt+1 = δ + η>vt+1 + ε
g
t+1, E[vt+1ε

g
t+1] = 0.

Two contributions, under novel asymptotics of p, T,N→∞:

1. consistently estimate latent loadings Γβ and factors f t+1 and

2. conduct inference on γg = η>γ

– under novel use of a dynamic latent factor model.
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THEORY LITERATURE REVIEW

The scope of the relevant literature is enormous. To name a few:

• Dynamic latent factor models: Connor and Linton (2007), Fan, Liao,
and Wang (2016), Kelly, Pruitt, and Su (2019) IPCA , Kelly, Pruitt, and Su
(2020), etc.

• Tests of observable factors: Fama and MacBeth (1973) Fama-MacBeth , Feng,
Giglio, and Xiu (2020) Factor Zoo , Giglio and Xiu (2021), etc.

• DML: Belloni, Chernozhukov, and Hansen (2014), Chernozhukov et al.
(2018), Semenova and Chernozhukov (2021), etc.
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ESTIMATION (1/4)

Rewrite the model:

ri,t+1 = z>i,tΓβ f t+1 + εi,t+1,

= zi,t,jct+1,j + z>i,t,–jct+1,–j + εi,t+1, E[εi,t+1|zi,t] = 0,

ct+1,j := Γ>β,j f t+1.

To estimate ct+1,j ∀t, j

• run Lasso to account for p ∼ N, but then biased inference for γg;

• instead run Double Selection Lasso (DSL).



ESTIMATION (2/4)

Model:

ri,t+1 = zi,t,jct+1,j + z>i,t,–jct+1,–j + εi,t+1, E[εi,t+1|zi,t] = 0,

ct+1,j := Γ>β,j f t+1.
(1)

Procedure:

1. To estimate ĉt+1,j, run T × p cross sectional DSL regressions. DSL

2. To estimate Γ̂β ∈ R p×k and F̂ ∈ RT×k, run PCA on Ĉ := F̂Γ̂>β ∈ RT× p.

3. Given exact row sparsity, soft-threshold Γ̂β to set most rows to zero for Γ̌β.



ESTIMATION (3/4)

Model for risk premium of nontradable observable factors:

ri,t+1 = z>i,tΓβ(γ + vt+1) + εi,t+1, E[εi,t+1|zi,t] = 0, E[vt+1εi,t+1] = 0,

gt+1 = η>vt+1 + ε
g
t+1, E[εgt+1] = 0, E[vt+1ε

g
t+1] = 0.



ESTIMATION (3/4)
Model for risk premia of nontradable observable factors:

ri,t+1 = z>i,tΓβ(γ + vt+1) + εi,t+1, E[εi,t+1] = 0, E[vt+1εi,t+1] = 0,

gt+1 = η>vt+1 + ε
g
t+1, E[εgt+1] = 0, E[vt+1ε

g
t+1] = 0.

Identification:
• Cannot jointly estimate η and vt+1 (Γβ and f t+1) without further restrictions.

E.g., three classic approaches of Bai and Ng (2013).

• So parameters are identified up to rotation matrix H ∈ Rk×k. That is,
η = H–1η0 and γ = Hγ0 (Γβ = Γ0

bH
–1 and f t+1 = H f0

t+1).

• Utilize rotation invariant result of Giglio and Xiu (2021):

γg = η>0 H
–1>Hγ0 = η>γ



ESTIMATION (4/4)
Model for risk premia of nontradable observable factors:

ri,t+1 = z>i,tΓβ(γ + vt+1) + εi,t+1, E[εi,t+1] = 0, E[vt+1εi,t+1] = 0,

gt+1 = η>vt+1 + ε
g
t+1, E[εgt+1] = 0, E[vt+1ε

g
t+1] = 0.

(2)

Procedure: γ̂g = η̂>γ̂

• Estimate factor innovations v̂t+1 and loadings Γ̌β as before but with
demeaned returns.

• Estimate latent factor risk premia γ̂ via CS OLS of average returns r̄ ∈ RN on
estimated latent factor loadings ¯̂

β := T–1∑
t Zt Γ̂β ∈ RN.

• Estimate latent to observable factor mapping η̂ via TS OLS of demeaned gt+1

on estimated latent factor innovations v̂t+1.
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KEY ASSUMPTIONS (1/2)

Assumption (Consistency of DSL)

1. Sparse Loading: Loading matrix Γβ admits an exactly sparse
form. That is, for ∃s ∈ N+, i.e. p > s ≥ 1, Γβ has at most s nonzero
rows:

∑ p
j=1 1

{∥∥Γβ,j
∥∥

1 > 0
}
≤ s. Additional DSL Assumptions



KEY ASSUMPTIONS (2/2)

Assumption (Consistency of Latent Factor Model)

2. Nonzero and distinct eigenvalues: from the infeasible

eigendecomposition of (T p)–1CC>, the k largest eigenvalues λi
for i ∈ {1, . . . , k} are bounded away from zero and distinct,

min
i:i 6=κ

|λκ – λi| > 0.

Additional Latent Factor Model Consistency Assumptions



ASYMPTOTIC RESULTS (1/3)

Proposition (Consistency of Latent Factors)
Under the DSLFMmodel (1) and aforementioned Assumptions 1 and 2,
with additional Appendix Assumptions 1-6, where T,N, p→∞, then
for all t the latent factor estimator has the property that

f̂ t+1 – H> f0
t+1 = O p

(√
s log(T p)

N

)
.



PROOF OUTLINE: CONSISTENT LATENT FACTORS

Recall C = FΓ>β , thus (T p)–1CC> = (T p)–1FΓ>β ΓβF>.

Key rate: maxt,j |̂ct+1,j – ct+1,j| = O p
(√

log(T p)
N

)
.

Gives control over the distance between feasible and infeasible matrix:

∥∥∥(T p)–1ĈĈ> – (T p)–1CC>
∥∥∥ = O p

(
log T p
N

)
.

Davis Kahan Theorem bounds distance between eigenvectors by distance

between matrices.

Finally, use Wely inequality to bound distance between eigenvalues.



ASYMPTOTIC RESULTS (2/3)

Proposition (Consistency of Latent Factor Loadings)
Under the DSLFMmodel (1) and aforementioned Assumptions 1 and 2,
with additional Appendix Assumptions 1-6, where T,N, p→∞, then
the latent loading estimator has the property that

Γ̌β – Γ0
βH

–1 = O p

(√
s log(T p)

N

)
.



PROOF OUTLINE: CONSISTENT LOADINGS
Aforementioned results yield:

∥∥∥Γ̂β – Γ0
β(H>)–1

∥∥∥
∞

= O p

(√
log(T p)

N

)
.

Utilizing Theorem 2.10 from Belloni et al. (2018) under exact sparsity of Γ0
β, s.t.

λ ≥ (1 – α) – quantile of
∥∥∥Γ̂β – Γ0

β(H>)–1
∥∥∥
∞

,

then given α→ 0 and λ .
√

log(T p)/N, we have for all q ≥ 1

∥∥∥Γ̌β,l – Γ0
β(H>)–1

l

∥∥∥
q
.P s1/q

√
log(T p)

N
.



ASYMPTOTIC RESULTS (3/3)

Theorem (Normality of Observable Factor Risk Premium)
Under the models (1) and (2); Assumptions 1 and 2; Appendix
Assumptions 1-10, and, if Ts2 log(T p)/N→ 0, then as T,N, p→∞ the

estimator γ̂g obeys

√
T

(γ̂g – γg)
σg

d−→ N(0, 1).



MONTE CARLO EVIDENCE (1/2)
Goal: study the finite-sample estimation error of our latent loading and factor

estimators and the coverage properties of our risk premium estimator compared

to relevant benchmarks.

DGP: for S = 200, T = 100,N = 500, k = 3, p ∈ {10, 50}, s = p/10

• Latent loadings: fit IPCA to empirical panel; set p – s rows to zero.

• Latent factors: fit IPCA to empirical panel; fit VAR(1) to fitted latent factors;
simulate from fitted VAR(1) with normal innovations.

• Characteristics: fit panel VAR(1) to demeaned empirical panel of {Zt}Tt=1 and
simulate from VAR(1) with normal innovations. Set means to bs.

• Returns and observable factor are generated according to the model where

errors are calibrated to empirical R2.



MONTE CARLO EVIDENCE (2/2)

Low-Dimensional: p = 10 Simulation Results Low-Dim.

• Factor of∼ 3 superior estimation error for Γβ.

• Order of magnitude inferior estimation error for f t+1.

• DSLFM under-covers (6-9%) while Giglio over-covers (2-4%) γg.

High-Dimensional: p = 50 Simulation Results High-Dim.

• Factor of >3 superior estimation error for Γβ.

• Inferior (×4) estimation error for f t+1.

• DSLFM degrades 1% while Giglio degrades > 3% γg.
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EMPIRICAL RESEARCH QUESTIONS

Broadly: Study the dynamics of crypto asset excess returns.

Specifically:

• Measuring expected returns through lens of factor models.

• What characteristics are the drivers of returns?

• What is the inflation risk premium in the crypto asset class?

• If we relax interpretability, what is the maximum out-of-sample
predictability that can we achieve?



EMPIRICAL LITERATURE REVIEW
Empirical crypto asset pricing is a nascent literature. To name a few:

• Asset pricing ability of factors models: Liu et al. (2019), Shams (2020),
Bianchi and Babiak (2021), Liu, Tsyvinski, and Wu (2022), etc.

• Crypto empirical facts: Makarov and Schoar (2020), Hu, Parlour, and
Rajan (2019), Borri (2019), Bianchi (2020), Liu and Tsyvinski (2021),
Bianchi, Guidolin, and Pedio (2022), Cheah et al. (2022), Zhang and Li
(2020), Zhang et al. (2021), Zhang and Li (2023), etc.

• Crypto panel: Liebi (2022), Borri et al. (2022), Cong et al. (2022).

• ML Factor Models: Chen, Pelger, and Zhu (2020), Gu, Kelly, and Xiu
(2020), Gu, Kelly, and Xiu (2021), Giglio, Kelly, and Xiu (2022).



EMPIRICAL SETTING

• Weekly panel of crypto asset excess returns from 2018-2022, inclusive,
with 63 time-varying asset characteristics. Summary Stats. Most go to zero.

• Inclusion criteria: month by month look back over trailing 3 months

– tradable on US CEX;
– remove stablecoins and synthetic assets;
– asset mean mcap above 1 bps of total crypto mcap; and,

– asset median total weekly trade volume on US exchanges above $500k.

• When fitting models sequentially, have to reform panel monthly.

• Form price from volume-weighted average hourly candle mid price.
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MOTIVATING EMPIRICAL FACTS (1/3)

Crypto Signals:

1. There are several characteristics with significant signal for the cross-section
of one-week ahead expected returns.

2. The asset characteristics contain redundant information; however, the
variation cannot be captured by just a few principal components.

Figures: Char. Correlations and Signal .



MOTIVATING EMPIRICAL FACTS (2/3)
A New and Rising Asset Class:

3. From zero in 2009, Bitcoin and hundreds of other crypto assets have become a trillion dollar
asset class in 2022, with several multi-billion dollar sub-industries.

4. Bitcoin achieved superior risk-adjusted returns for nearly the entire study time period as
compared to traditional asset classes.

5. Bitcoin has lower correlations to the Nasdaq and S&P500 (at 0.23 and 0.21) than that of gold’s
correlation to these indices (at 0.26 and 0.28).

6. Bitcoin’s correlation with other assets is highly time varying, including several quarters of zero
or negative correlation with the Nasdaq; their high correlation (> 0.3) is only observed recently
in 2022.

7. From diversifying a risk portfolio of holding 100% Nasdaq to 60% Nasdaq and 40% CMKT, one
would obtain a Sharpe Ratio gain of 0.53 (from 0.43 to 0.96).

8. The crypto market offers a positive inflation risk premium of 31 bps.

Figures: MCaps , Sharpe Ratios , Correlations , Rolling Correlations , Risk and Return , Inf. Risk Premium .



MOTIVATING EMPIRICAL FACTS (3/3)

Bitcoin Onchain Facts:

10. Bitcoin is primarily used as a store value, not speculatively trading.

11. Bitcoin is a payment network settling hundreds of billions of dollars
annually where the large majority of transactions cost less then one USD.

12. Efforts to fork, that is copy, the Bitcoin blockchain have had immaterial
adverse effects on it; an event study of forks observes, on the contrary,
significant positive effects on price, trading volume, active addresses, and
social activity.

Figures: BTC Hodling , BTC Tx , BTC Forks .



LOW DIM. MODELS: UNIVARIATE FACTORS (1/2)
• Begin our empirical study of return dynamics by forming univariate

factors from each asset characteristic.

• Form zero-net investment long-short quintile strategies for t + 1
sorted on each characteristic at time t.

• Statistically and economically significant strategies are financial (i.e.
two week momentum, 30 and 60 day industry momentum, beta,
idiosyncratic skewness, and 5% shortfall). Significant Univariate Factors

• 35 of 57 remaining strategies have weekly excess return above 30 bps.

• Predictors of average excess returns appear to be characteristic-based
factors formed as functions of previous returns.



LOW DIM. MODELS: MULTI, PCA, IPCA (2/2)

• Multifactor models: static observable, static latent, & dynamic latent.

• Estimation procedures are Fama-MacBeth, PCA, and IPCA.

• All three have long-short strategies with economically significant
Sharpe ratios of 1-4 (IPCA has stat. sig.) although optimal number of
factors is inconsistent. Low Dim. Factor Models .

• Replicates IPCA to new asset class, and suggestive of signal in
characteristics.
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HIGH DIM. MODELS: DSLFM (1/4)

Study three questions:

1. out of sample predictability;

2. characteristic importance; and,

3. inflation risk premium.



HIGH DIM. MODELS: DSLFM OOS (2/4)

In comparing predictability of DSLFM to previous models:

• CV penalty hyperparameters in Q3 2021 - Q2 2022.

• Positive R2
pred for only 1 factor model.

• Sharpe ratios of∼ 1 for mcap weighted and∼ 2.5 for equal weighted.

• IPCA outperforms on Sharpe and pricing ability, but not materially.
DSLFM OOS

• Limited N for asymptotics to kick in; no feature selection for feat. imp.



HIGH DIM. MODELS: DSLFM CHAR. IMP. (3/4)

• Implement bootstrap procedure for characteristic importance:

Ŵj = Γ̂>β,jΓ̂β,j.

• According to the DSLFM, the drivers of returns are exchange
inflows and outflows.

DSLFM Char. Imp.



HIGH DIM. MODELS: DSLFM INFLATION (4/4)

• Outstanding question on the relationship of crypto’s returns to
inflation.

• Perform inference procedure for inflation risk premium γg.

• Inflation risk premium of statistically significant 1.4 bps per week.

• Corroborates with a dynamic latent factor model with superior
pricing ability the result using the static observable factor model fit
with the Fama-MacBeth procedure.

• The asset class provides investors positive compensation for holding
an inflation-hedged crypto portfolio, ceteris paribus.



HIGH DIM. MODELS: DEEP LEARNING (1/6)

We ask:

• what is the maximum out of sample Sharpe ratio achievable

• in our out of sample period

• by relaxing interpretability of the factor model to specify
nonparametric factors and factor loadings

• estimated with deep learning?



HIGH DIM. MODELS: DEEP LEARNING (2/6)

Why DL to learn f (·) in ri,t+1 = f (It) + εi,t+1 :

• It is high dimensional

• It redundant =⇒ regularization!

• f (·) is likely non-linear.

• DL’s universal approximation theorems, e.g. Hornik, Stinchcombe,
and White (1990).

• Minuscule improvement is the name of the game.
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Now, why not?

ri,t+1 = f (It) + εt+1, E[εt+1|It] = 0.

• EMH =⇒ f (·) = 0, such that ri,t+1 = 0 + εi,t+1.

• It’s f t(·), not f (·).

• Makes the curse of dimensionality much bigger problem.

• Perhaps SOTA DL with lots of regularization?
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HIGH DIM. MODELS: DEEP LEARNING (4/6)
Utilize recent adaption of feed-forward neural networks within a factor

model structure: stay true to equilibrium asset pricing theory. Autoencoder.

Several modifications:

• Nonlinear factor autoencoder.

• Sequential CV with more hp points: learning rate decay, Adam
parameters, weights and bias initializers, etc.

• Weight loss by hourly trade volume over previous hour.

• Feature selection down to 50 characteristics.

Also, embed Transformers into factor model structure. Transformer.



HIGH DIM. MODELS: DEEP LEARNING (5/6)
Iterative step-forward CV: for each hyperparameter point in the grid,

• Set training data to 2018-2020.
– For transformer, dropped 2018-2019 due to too many missing assets.

– 2020 has 532,368 non-missing asset-hours.

• Set validation data to Q1 2021.

• For each week in the validation period,

– Fit in training and predict in val week.

• Add current validation data to training, set next quarter to validation.

Select best model from validation period. OOS predict, once.



HIGH DIM. MODELS: DEEP LEARNING (6/6)

• Autoencoder dominates on out of sample Sharpe at 10.

– It failed to achieve positive out-of-sample predictive R2.

DL Results.

• Transformer had a stat. sig. R2
pred of 3.6%,

– But, returns were negative in the Q3-Q4 2022 data to transaction costs,
– which motivates further research with 2023 data.

– Scaling laws present in validation period up to 50-100k parameters,

but did not replicate out of sample.

I am focused on exploring these DL scaling laws in practice.
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Thank You!



APPENDIX: IPCA

The model is
ri,t = z>i,t–1Γδ f t + εi,t.

The objective function is to minimize the sum of the squared errors:

min
Γδ, f t

T∑
t=1

(rt – Zt–1Γδ f t)> (rt – Zt–1Γδ f t) .



APPENDIX: IPCA

The first-order conditions are

f̂ t =
(
Γ̂ ′δZ
′
t–1Zt–1Γ̂δ

)–1
Γ̂ ′δZ
>
t–1rt,

vec
(
Γ̂ ′δ

)
=
(T–1∑
t=1

Z′t–1Zt–1 ⊗ f̂ t f̂
′
t

)–1(T–1∑
t=1

[
Zt–1 ⊗ f̂

′
t

]′
rt

)
.

• Factor realizations are period-by-period cross section regression coefficients
of rt on the latent loading matrix δt–1.

• Γδ is the coefficient of returns regressed on the factors interacted with
firm-specific characteristics.



APPENDIX: IPCA
Similarities:

• (Second-stage) factor model relationship and joint fitting.

• Cross-sectional and time-series two step procedures a la Fama MacBeth.

• Efficiency gains from using asset covariates.

• Accommodate unbalanced panels.

Pro Double Lasso:

1. Sparse estimation

2. Convex objective functions

3. Model high dimensional p

4. Closed-form inference for target

question

Pro IPCA:

1. Conceptually simpler
optimization

2. Fewer assumptions for
asymptotic theory

3. Rapid estimation
Back to Lit Review Back to Est



APPENDIX: FAMA-MACBETH REGRESSIONS

The classic observable factor model estimation is the Fama and MacBeth (1973) procedure.

• We first run N TS regressions for each asset followed by T CS regressions for each time period.

– That is, we first estimate β̂i for each asset i by running TS OLS of {ri,t+1}Tt=1 on { f t+1}Tt=1.

• Next, we run ∀t the CS OLS of asset excess returns {ri,t+1}Ni=1 on estimated factor loadings {β̂i}Ni=1.

– We recover estimates λ̂t for the risk premium λt = Et[ f t+1] as well as

– the pricing errors from the cross-sectional residuals, α̂i,t+1.

• Finally, we estimate the parameters of interest: the static risk premium λ̂ and the static average

pricing error α̂i as the time-series averages of the relevant estimator, λ̂t and α̂i,t+1, respectively.

Back



APPENDIX: DSL ESTIMATION PROCEDURE

ri,t+1 = zi,t,jct+1,j + z>i,t,–jct+1,–j + εi,t+1, E[εi,t+1|zi,t] = 0,

zi,t,j = z>i,t,–jδt,j + εzi,t,j, E[εzi,t,j|zi,t,–j] = 0,

ct+1,j := Γ>β,j f t+1.

For ĉt+1,j, run T × p Double Selection Lasso CS regressions ∀t, j.

1. Lasso {ri,t+1}Ni=1 → {zi,t}Ni=1 for Î1 = nonzero elements of ĉt.

2. Lasso {zi,t,j}Ni=1 → {zi,t,–j}Ni=1 for Î2 = nonzero elemnts of δ̂t,j.

3. Define Î := Î1 ∪ Î2 ∪ Î3 where Î3 is manually chosen.

4. OLS {ri,t}Ni=1 on elements of {zi,t–1}Ni=1 in Î. Back



APPENDIX: ASSUMPTIONS
Assumption (DSL Uniform Consistency)

1. Bounded Characteristic Portfolios: For a finite absolute constant M and ∀t, j,∣∣ct+1,j
∣∣ =
∣∣∣Γ>β,j f t+1

∣∣∣ < M.

2. Sparsity rate: The sparsity index obeys s2 log2 ( p ∨ N) /
(√

N log(T p)
)
≤ δN,T .

Additionally, log3 p/N ≤ δN,T .

3. Weak dependence between the first- and second-stage errors: There exists a

positive constant M such that ∀ p, T,N :∣∣∣∣∣
√

1
N

N∑
i=1

εzi,t,jεi,t+1

∣∣∣∣∣ ≤ M log(T p).

4. Additional standard DSL assumptions in Appendix C.2 of the paper.

Back



APPENDIX: ASSUMPTIONS

Assumption (Consistency of Latent Factor Model)

5. Factors: E
∥∥∥ f0

t+1

∥∥∥4
≤ M <∞ and T–1∑

t f
0
t+1 f

0>
t+1 → p Σ f for

some k × k positive definite matrix Σ f .

6. Factor Loadings: ∀j,
∥∥Γβ,j

∥∥ ≤ M <∞ and
∥∥∥Γ>β Γβ/ p – ΣΓ

∥∥∥→ 0
for some k × k positive definite matrix ΣΓ .

Back



APPENDIX: ASSUMPTIONS

Assumption (Inference)

∃ a generic absolute constant M <∞ such that for all p, T,N :

7. Bounded idiosyncratic errors: E[(
∑

t εi,t+1)2] ≤ TM.

8. Bounded scaled factor innovations: E[(
∑

t z
>
i,tΓ

0
βv

0
t+1)2] ≤ sTM.

9. Bounded measurement errors: E[(εgt+1)2] ≤ M.



APPENDIX: ASSUMPTIONS
Assumption (Inference)

9. Convergence of characteristics:
1
NT
∑

i
∑

t′ E[zi,t,j]zi,t′,j′ → p Zt,j,j′ uniformly over t, j, j′ for
j, j′ ∈ {1, 2, . . . , p} and a nonstochastic finite constant Zt,j,j′ ∈ R.

10. CLT: As T →∞,

1√
T

∑
t

(
v0
t+1ε

g
t+1

Πtv0
t+1

)
d−→ N(0,Φ)

for randommatrixΠt ∈ Rk×k and nonstochastic matrix

Φ ∈ R2k×2k.



APPENDIX: SIMULATION LOW-DIMENSIONAL

Back to Simulation Result Summary.
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Back to Simulation Result Summary.
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Back to Empirical Setting
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Back to Empirical Setting
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Back to Motivating Empirical Facts
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APPENDIX: CHARACTERISTIC CORRELATIONS AND
SIGNAL

See paper appendix figures A15 through A24.
Back to Motivating Empirical Facts



APPENDIX: UNIVARIATE FACTOR RETURNS

Back to Univariate Factor Models.
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See paper appendix table A31.
Back to Low Dimensional Factor Models.
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